** متابعات ثقافية متميزة ** Blogs al ssadh
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

** متابعات ثقافية متميزة ** Blogs al ssadh

موقع للمتابعة الثقافية العامة
 
هل هناك فيزياء جديدة في الكون؟ I_icon_mini_portalالرئيسيةالأحداثالمنشوراتأحدث الصورالتسجيلدخول



مدونات الصدح ترحب بكم وتتمنى لك جولة ممتازة

وتدعوكم الى دعمها بالتسجيل والمشاركة

عدد زوار مدونات الصدح

إرسال موضوع جديد   إرسال مساهمة في موضوع
 

 هل هناك فيزياء جديدة في الكون؟

اذهب الى الأسفل 
كاتب الموضوعرسالة
نعيمة
فريق العمـــــل *****
نعيمة


عدد الرسائل : 360

تاريخ التسجيل : 14/04/2010
وســــــــــام النشــــــــــــــاط : 2

هل هناك فيزياء جديدة في الكون؟ Empty
25102013
مُساهمةهل هناك فيزياء جديدة في الكون؟

[rtl] هل هناك فيزياء جديدة في الكون؟[/rtl]
[rtl] [/rtl]
[rtl] [/rtl]
[rtl]أدى نشر كتاب ستيفن وولفرم Stephen Wolfram في صيف عام 2002 بعنوان شكل جديد للعلم[1] A New Kind of Science إلى ردود نقدية عنيفة من قبل المجتمع العلمي[2]. وتركَّز النقد على كون وولفرم يعتبر نفسه كنيوتن جديد، فهو يكبح من القواعد الأساسية التي يبني عليها مجتمع العلماء اليوم، خاصة وأنه لا يرجع إلى مراجع العلوم الأساسية المتعارف عليها. إضافة إلى ذلك فإن فرضيته الأساسية تقول إن مجمل الظاهرات هي في النهاية مشابهة لعمل برنامج معلوماتي أولي. غير أن وولفرم ليس الوحيد الذي يعمل في هذا الاتجاه. ويبدو أن هذا التيار الجديد في العلم بدأ يفرض نفسه بقوة خلال السنوات القليلة الماضية.[/rtl]
[rtl]يرأس هذا التيار كل من ستيفن وولفرم وإدوارد فردكين Edward Fredkin وسيث لويد Seth Lloyd. وهم جمعيًا من العلماء الرفيعي المستوى المهتمين بالفيزياء والعلوم المعلوماتية، وأصحاب تصور يقول إنه سيأتي يوم يوصف فيه الكون كحاسوب عملاق، أو كآلة ذات صيغ حسابية بسيطة في النهاية رغم كل تعقيدها الظاهر.[/rtl]
[rtl]يقول وولفرم مدافعًا عن فرضيته:[/rtl]
[rtl]أعتقد أنه يوجد برنامج بسيط جدًا، ووحيد، إذا ما ترك لفترة كافية من الوقت فإن قادر على إنتاج كافة تفاصيل كوننا. فهذا البرنامج يشكل بالتالي النظرية النهائية للفيزياء.[3][/rtl]
[rtl]وينهي وولفرم الفصل المخصص في كتابه للفيزياء الأساسية بالكلمات التالية:[/rtl]
[rtl]... سينتهي الأمر بإثبات أن كل تفصيل في كوننا يتبع بالفعل لقواعد يمكن تمثيلها ببرنامج بسيط، وأن كل ما نراه سينتهي بأن ينبثق فقط من تشغيل هذا البرنامج.[/rtl]
[rtl]يقول أحد المتابعين لهذا التيار الجديد إن وولفرام[/rtl]
[rtl]ينتمي إلى جماعة يزداد عددها باطراد من العلماء الذين يعتقدون إن نماذج معلوماتية patterns of information هي التي تمثل المركبات الأولية للوقائع، أكثر من المادة أو الطاقة.[4][/rtl]
[rtl]لعل سيرة وولفرم العلمية هي التي جعلت العلماء يناقشون أفكاره رغم عدم تقبلهم لها. فهذا العالم كان قد حصل على شهادة الدكتوراة في فيزياء الجسيمات الدقيقة وهو في العشرين من عمره، وأسس مختبرًا لدراسة المحركات الخلوية في مركز الدراسات المتقدم الشهير في برنستون، ثم أسس مركزًا للبحوث حول المنظومات المعقدة في جامعة إيلينوي Illinois. ثم تحول إلى ابتكار برنامج معلوماتي متخصص في حل المعادلات الرياضية المعقدة مما جعل منه رجلاً ثريًا. لكنه ابتعد عن إدارة هذا المشروع منذ عشر سنوات ليتفرغ لكتابة عمله الفلسفي والعلمي الذي تحدث عنه صديقه الرياضي غريغوري شايتان Gregory Chaitin معجبًا بقوله:[/rtl]
[rtl]يحاول ستيفن في هذا العمل الكشف عن الأسس الأولية التي بنى الله بها العالم.[5][/rtl]
[rtl]عند صدور كتابه، حاورته مجلة حول أفكاره الجديدة هذه، وسألته حول طول القاعدة أو المعادلة التي يجب برأيه أن تفسر الكون كله، فأجاب:[/rtl]
[rtl]-        أعتقد أنها يجب أن تكون قصيرة جدًا.[/rtl]
[rtl]-        من أية رتبة يجب أن يكون هذا القصر؟[/rtl]
[rtl]-        لا أعرف، ربما وفقًا لبرنامج الحاسوب الرياضي الذي وضعته، ليس أكثر من ثلاثة أو أربعة أسطر من البرمجة.[/rtl]
[rtl]-        أربعة أسطر من البرمجة؟![/rtl]
[rtl]-        هذا ما أتوقعه. وأنا بالطبع لا أعرف تمامًا، لكنني لا أرى سببًا موجبًا لأن تكون أطول بكثير من ذلك [...]. أعتقد أنه سيأتي يوم نمسك فيه بهذه الأسطر القليلة، فيتكشف لنا سر الكون.[/rtl]
[rtl]بل ويمضي وولفرم أبعد من ذلك إلى حد يخبر معها الصحفي بأنه قد يكتشف هو نفسه هذه السطور القليلة.[6][/rtl]
[rtl]وفي نظر وولفرم فإن هذه السطور القليلة السابقة الذكر هي عبارة عن القوانين أو الإجراءات الأولية التي إذا طبقت على عدد قليل جدًا من المعطيات الأولية، بل على واحد منها فقط، فإن تخلق بشكل لا يمكن توقعه بنى ذات تعقيد كبير وهائل. إنه أشبه بما تقوم به بعض المولدات الخلوية، كما في القاعدة الشهيرة المعروفة باسم 110.[/rtl]
[rtl]يشبه ذلك إلى حد بعيد ما ذهب إليه فردكين منذ السبعينات. وكان هذا العالم الذي وضع مبادئ علم جديد برأيه يسميه "الفيزياء الرقمية physique numérique"، قد دعا عددًا من العلماء لمناقشته فيه وبينهم وولفرم وشايتين، ونجد على موقعه على الإنترنت[7] نسخة من كتابه وشرحًا لنظريته حول الميكانيكا الرقمية Digital Mechanics. وهو يرى من قبل وولفرم أن الكون محكوم بمولِّد خلوي أولي. ويقول في موضوع حول الميكانيكا الرقمية نشره في عام 1990 على الإنترنت[8]:[/rtl]
[rtl]نعتقد أننا سوف نجد قاعدة وحيدة لمولد خلوي ينمذج مجمل الفيزياء الصغائرية، وينمذجها بشكل دقيق.[9][/rtl]
[rtl]وهو يرى كما شرح لأحد الصحفيين أن[/rtl]
[rtl]هذه القاعدة هي السبب والمحرك الأولي لكل شيء.[/rtl]
[rtl]مع ذلك فإن الاختلاف بين فردكين وولفرم واضح. فوولفرم جلب نقمة المجتمع العلمي عليه بسبب عدم تقيده بالمراجع العلمية ونسبه معظم الأفكار له وحده. وهو بقوله إنه يريد تفسير كل شيء في الكون فإنه يعني ذلك حرفيًا، من أدق تلافيف الدماغ البشري إلى تعقيدات المجتمعات البشرية. أما فردكين فيعترف بمساهمات أقرانه من جهة، بمن فيهم وولفرم، ويتوقف من جهة أخرى عند حدود الكائن الحي، فهو يعترف بأن قاعدته النهائية لن تفسر مجمل الفيزياء في النهاية... مع إصراره هو والقائلين بهذا التيار الفكري الجديد بأن العالم الحي سيُفسَّر يومًا بمصطلحات نظرية المعلومات:[/rtl]
[rtl]فليس الفأر سوى نتيجة صيرورة معلوماتية ثقيلة ومعقدة.[10][/rtl]
[rtl]يشارك عدد من الفيزيائيين الآخرين، كما ذكرنا، هذا التصور لكل من فردكين وولفرم. فالطبيعة منتهية ومحددة، مثل بيتات المعلومات. فليس ثمة ما هو مستمر، بما في ذلك المكان والزمان. فهذا الطابع المحدد هو الذي يفسر قدرتنا على تخيل إدراك وفهم الطبيعة من خلال مولدات خلوية: فلم يعد ثمة حاجة بالتالي إلى التحليل بالمعنى الرياضي للمصطلح ولا إلى المعادلات التفاضلية. ووفقًا لفردكين، سوف نكتشف يومًا ما أن وراء النسبية العامة لأينشتين تختفي مصفوفة ما، وأن الشواش في الميكانيك الكمومي يخفي نموذجًا تحديديًا. فالكون محدد بقدر برنامج يحدد في كل لحظة موضع القطع على رقعة شطرنج[11]. وبكلمات فردكين نفسه:[/rtl]
[rtl]إذا افترضنا أن الطبيعة منتهية، فإن الفيزياء ستكون مبرمجة على حاسوب كوني![12][/rtl]
[rtl]يعتبر سيث لويد طرفًا أساسيًا في هذا الاتجاه الفكري، لكنه مع ذلك ينحو منحى يختلف بشكل نوعي عن كل من وولفرم وفردكين. فهو أحد المختصين بموضوع التعقيد. ويطمح إلى بناء نظرية في البنى المعقدة. ولهذا فهو يبحث عن أداة قياس وحيدة تسمح بتكميم المعقد. فإذا كان لديكم جهاز قياس للتعقيد فسارعوا بإرساله إلى سيث لويد فورًا! وهو مثل وولفرم وفردكين مقتنع تمامًا بالصلة الوثيقة بين الفيزياء والمعلومات. وهو يعمل حاليًا مع موراي جيل مان Murray Gell-Mann على بناء نظرية للتعقيد الكمومي. غير أن هدفه هو العودة من اللامتناهي الفيزيائي إلى اللامتناهي الإنساني: ففي النهاية، هو يهتم بتعقيد المجتمعات البشرية. وعلى عكس وولفرم وفردكين، اللذين لم ينشرا شيئًا جديدًا تقريبًا منذ عدة سنوات في مجلة علمية ذات لجنة تحكيمية، فإن لويد لا يزال يلعب هذه الورقة بقوة. وقد نشر في عام 2000 مقالة تأليفية كبيرة في مجلة Nature كان عنوانها: الحدود الفيزيائية القصوى للحساب. وهو يصف بشكل خاص "حدود الحاسب الشخصي القصوى"[13]. وفي عام 2002 نشر مقالاً في المجلة الأهم بالنسبة للفيزيائيين بعنوان المقدرة الحسابية للكون. وفي هذه المقالة يحسب[/rtl]
[rtl]حاصل المعلومة التي يمكن للكون أن يسجلها وعدد العمليات الأولية التي يمكن أن يكون قد أنجزها على امتداد تاريخه.[/rtl]
[rtl]ويصل مجموع هذا الحساب إلى 12010 عملية على 9010 بيت من المعلومات[14]. ونجد ضمن مراجع هذه المقالة كتاب فردكين المتوفر على الإنترنت. ويختم مقالته هذه بهذه الجمل:[/rtl]
[rtl]هل الكون هو حاسوب؟ إنه ليس بالتأكيد حاسوبًا رقميًا يستخدم لينوكس أو ويندوز. غير أنه من الواضح أن الكون يمثل ويعالج بطريقة منهجية حجومًا قابلة للتكميم من المعلومات.[/rtl]
[rtl]وعندما سألته مجلة نيتشر Nature البريطانية مؤخرًا حول الموضوع أجاب:[/rtl]
[rtl]إذا اعتبرنا أن الكون ينجز حسابًا ما، فإن معظم العمليات الأولية تكون عبارة عن حركات بروتونات ونوترونات وإلكترونات وفوتونات بين مواضع مختلفة وتتفاعل فيما بينها وفقًا لقوانين الفيزياء.[/rtl]
[rtl]وعندما سئل: ما الذي يحسبه الكون؟ أجاب لويد: "يحسب ديناميكيته الخاصة."[/rtl]
[rtl]يبدو أن فكرة مماثلة الكون بالحاسوب كانت قد طرحت منذ عام 1967 للمرة الأولى على يد الألماني كونراد زوس Konrad Zuse، وهو أحد أوائل مصممي الحاسوب. وكان قد طرح هذه الفكرة في مقالة نشرت بالألمانية سنة 1967 بعنوان الفضاء الحاسب[15]. وكان هذا المقال يرتكز مباشرة على الكتاب الذي كان قد صدر قبله بسنة واحدة لجون فون نيومان John von Neumann بعنوان نظرية المحركات المتوالدة ذاتيًا. بعد ذلك تطورت الفكرة مع أعمال نظريين مختلفين عملوا إما على الطبيعة الفيزيائية للمعلومة، مثل رولف لاندور Rolf Landauer، أو على فرضية الطابع غير المستمر للطبيعة. وفي مقالة ظهرت في عام 1999 أعاد الفيزيائي الهولندي الذي نال في هذه السنة جائزة نوبل للفيزياء جيرار تهوفت Gerard t'Hooft التأكيد على اقتناعه بأن[/rtl]
[rtl]المكان والزمان والمادة منفصلين أو غير مستمرين بالضرورة.[16][/rtl]
[rtl]وقد شارك جيرار تهوفت في صيف 2001 في ندوة مولتها المؤسسة الوطنية للعلوم في أمريكا بعنوان المنظور الرقمي. وكان من المشاركين فيها بالطبع إدوارد فردكين.[/rtl]
[rtl]لا شك أن الأفكار التي طورها فردكين كانت ترتكز على أعمال سابقين مثل فون نيومن ولاندوير. وكان هذا الأخير بشكل خاص ملهم الأعمال التي قادت كلا من شارل بنيت Charles Benneett من جهة، وإدوارد فردكين وتوم توفولي من جهة أخرى، إلى اكتشاف أن كل حساب معلوماتي يمكن من حيث المبدأ أن يتم بطريقة عكوسة منطقيًا. الأمر الذي فتح الباب للعمل على الحواسب التي تبدد حرارة أقل.[/rtl]
[rtl]تعتبر قوانين الفيزياء عكوسة على المستوى الصغائري، وتحفظ الطاقة وكميات أخرى. وكانت فكرة فردكين هي دراسة إمكانية القيام بحساب إلكتروني عكوس مما فتح الدرب أمام الحواسب التي لا تبدد الكثير من الحرارة خلال عملها. وتعتبر مشاريع العمل على الحواسب الكوانتية في جانب منها سليلة هذا التيار من التفكير، أي استثمار مصادر الفيزياء من أجل تجاوز حدود الحساب. يذهب توماس توفولي Toffoli أبعد من ذلك بمماثلته لكمية الحساب مع مفهوم الحركة الفيزيائي، والتي تصبح عندها قياسًا[/rtl]
[rtl]لعدد الحالات الصغائرية المكنة من أجل الوصول إلى السلوك المرصود نفسه،[/rtl]
[rtl]حيث تكون الأنتروبية هي[/rtl]
[rtl]قياس عدد الحالات الممكنة لمنظومة ما،[/rtl]
[rtl]أي للمعلومات الكامنة. وبعبارة أخرى، كلما كان الحاسوب أكبر، كلما كان عدد الطرائق للحصول منه على النتيجة نفسها خلال زمن معطى أكبر.[/rtl]
[rtl]شهد التاريخ ولادة الكثير من العلوم الجديدة، إنما القليل جدًا من الأشكال الجديدة للعلم. فلكي يكون العلم من نمط جديد لا بد من تغيير جذري في الفكر، كما حصل مع المرور من الموروث الأرسطي إلى المنهج التجريبي، أو مع وصف الظاهرات الطبيعية باللغة الرياضية، وهما ثورتان ارتبطتا بأسماء معينة مثل غاليله ونيوتن. ولهذا فلم يكن وولفرم قد عنون من فراغ أو بلا قصد كتابه شكل جديد للعلم، وهو الكتاب الذي يخصصه لطريقته في تفسير العالم الطبيعي. إن حجم الكتاب الذي يصل إلى 1260 صفحة يكاد يساوي مجموع حوارات غاليليو وكتاب المبادئ لنيوتن. لكن هل محتواه على مستوى ما يعد به العنوان. هذا ليس تمامًا رأي المجتمع العلمي.[/rtl]
[rtl]ترتكز الفكرة الأساسية للكتاب على أن برامج حساب بسيطة، هي المحركات الخلوية، تسمح بتفسير الظاهرات الطبيعية التي لم تنجح التقنيات الرياضية "الكلاسيكية" حتى الآن في تفسيرها، مثل المعادلات التفاضلية. والمحرك الخلوي في أبسط أشكاله هو سلسلة وحيدة البعد من الخانات أو من الخلايا التي يمكن لكل منها أن تأخذ اللون الأبيض أو الأسود. ويتغير لون الخلية (أي "حالتها") مع مرور الزمن. وفي كل مرحلة زمنية تقوم كل خلية بإعادة تعيين حالتها – أي أنها تحفظ لونها من المرحلة السابقة أو تنتقل إلى اللون المعاكس تبعًا لحالتها السابقة ولحالة مجاوراتها المباشرة. إن قاعدة أو "قانون" المولد الخلوي أو المحرك الخلوي هو قائمة التوابع التي تعطي لكل من ترتيبات الخلايا الثلاث المتجاورة الحالة الجديدة للخلية المركزية (مثال ذلك ما يعرف بالقاعدة 110 الشهيرة). ويعتبر وولفرم في عمله النظري خطوط الخلايا هذه لانهائية عمومًا ليتجنب كافة المشاكل التي يمكن أن تنجم عن النهايات. تسمى هذه المولدات الخلوية الوحيدة البعد، وذات الحالتين والمحدودة بتراصف خليتين متجاورتين فقط كمحركات أولية أو بسيطة. أما في النسخ الأكثر تعقيدًا من هذه المحركات فإن عدد الحالات الممكنة للخلايا مرتفع أكثر، ويكون التجاور المعتبر أوسع، كما يمكن عدم الاكتفاء ببعد واحد.[/rtl]
[rtl]ربما كانت المحركات الخلوية هي النموذج الأكثر مثالية للمنظومات المعقدة: فهي تتألف من عدد كبير من المركبات البسيطة (هي عبارة عن خلايا هنا) دون ضابط مركزي ومع القليل من الاتصالات بين مركباتها. وكان قد عرَّفها ودرسها في الأصل الرياضي ستانيسلاف أولام Stanislaw Ulam وجون فون نيومان، واستخدمت كنموذج للظاهرات الطبيعية مثل الهزات الأرضية والسيلانات المتدومة والتلون البيولوجي أو النمو الورمي. كذلك فقد طبقت في مجالات المعلوماتية النظرية حيث استخدمت كنموذج مثالي للحساب المتوازي وغير المركزي.[/rtl]
[rtl]أسَّس وولفرم مقاربته على ست أفكار أساسية تستحق أن نعالجها هنا بتمعن.[/rtl]
[rtl]الفكرة الأولى: البرامج البسيطة تولِّد التعقيد[/rtl]
[rtl]يقدم وولفرم في كتابه صورًا رائعة ومدهشة لسلوك مختلف المحركات الخلوية. وهي تبين أن هذه المولدات مهما كانت أولية يمكن أن تنتج أشكالاً تتراوح بين البسيطة والأكثر تعقيدًا، ومن المنتظمة جدًا إلى تلك ذات المظهر العشوائي. ويعتبر وولفرم أن هذا التنوع الهائل لهذه الأشكال فائق الأهمية كما وإمكانية الحصول على سلوك بمثل هذا التعقيد ظاهريًا ابتداء من قواعد بهذه البساطة.[/rtl]
[rtl]إن فكرة القواعد البسيطة التي يمكن أن تؤدي إلى سلوك معقد فكرة هامة جدًا وأساسية في علم المنظومات المعقدة. غير أن وولفرم يجعلنا نعتقد أنه هو من اكتشف هذا المفهوم بل ومن أوجد مجال البحوث في المنظومات المعقدة، وهذا أمر خاطئ تمامًا. فمفهوم القواعد البسيطة التي تؤدي إلى سلوكات معقدة هو أساس جزء كبير من نظرية المنظومات الديناميكية، وخاصة المجموعة الفرعية منها والتي غالبًا ما تعرف باسم "نظرية الشواش"[17]. وإن كنا نجهل تمامًا متى صيغت الفكرة للمرة الأولى لكننا نعرف أن كلا من نيكولاس متروبوليس Nicholas Metropolis وبول ستاين Paul Stein وميرون ستاين Myron Stein كانوا قد قدموا، منذ بداية السبعينات، تفسيرًا مفصلاً للسلوك المعقد للتكرار المتدرج للتوابع البسيطة[18]. وكان جون كونواي John H. Conway قد وضع، في نهاية الستينات، "لعبة الحياة"، وهو عبارة عن مولِّد بسيط ثنائي البعد قادر على القيام بسلوك فائق التعقيد. وخلال الفترة نفسها اخترع أرستيد لاندنماير Aristid Lindenmayer ما نعرفه اليوم باسم المنظومات L، وهي عبارة عن قواعد بسيطة تولِّد صورًا لنباتات وأشكال طبيعية أخرى قريبة جدًا من الواقع[19]. وكانت إحدى أولى مساهمات وولفرم في هذا المجال هي ملاحظة وتصنيف السلوكات المعقدة لهذا النمط عند المولدات الخلوية الأولية.[/rtl]
[rtl]الفكرة الثانية: تتولد تعقيدات الطبيعة بواسطة مولدات خلوية[/rtl]
[rtl]في نظر وولفرم، فإن المولدات الخلوية، أو القواعد البسيطة المشابهة، هي المسؤولة عن الجانب الأساسي من المظاهر العشوائية وعن التعقيد في الطبيعة. ويشير في سبيل دعم هذا الرأي إلى أن الصدفة والتعقيد شائعان جدًا في سلوك القواعد البسيطة، وأن بعض الظاهرات الطبيعية المعقدة وذات المسلك والهيئة العشوائية لها مظاهر بصرية مماثلة للأشكال الناتجة عن المولدات الخلوية البسيطة. ويقدم وولفرم مناقشة هامة ومفيدة لمعنى المصطلحين "العشوائي" و"المعقد". ويرى أن معنى هاتين الكلمتين تابع للعناصر التي نهتم بها ولأدوات المراقبة والتحليل التي نملكها. ويدرس وولفرم بتفصيل كبير هذه العلاقات ويخصص فصلاً كاملاً لمناقشة المراقبة والتحليل. لكننا مع الأسف لا نجد (من وجهة نظر العلم المدرسي) أية براهين لدعم فكرته التي وفقها، وطالما أن قواعد بسيطة تقود غالبًا إلى سلوك عشوائي وإلى مظاهر معقدة، فإن القواعد البسيطة هي التي يجب أن تكون أصل معظم السلوكات التي من هذا النمط في الطبيعة.[/rtl]
[rtl]أضف إلى ذلك أن وولفرم يحدد الفاصل بين نتائجه حول المولدات الخلوية والنتائج الأقدم منها حول المنظومات الشواشية. ووفقه، فإن بعض المولدات الخلوية لها المقدرة "الذاتية" على إنتاج العشوائي (انطلاقًا من حالة بدئية بسيطة جدًا)، في حين أن المنظومة الشواشية لا تستطيع ذلك إلا إذا كانت حالتها البدئية عشوائية. غير أن ذلك ليس صحيحًا تمامًا كما يرد عليه العلماء. إذ يوجد في الواقع الكثير من المنظومات الشواشية حيث تؤدي حالة بدئية بسيطة جدًا إلى نتيجة ذات مظهر عشوائي: ومنظومة معادلات لورنتز هي مثال معروف على ذلك[20]. وبشكل عام، فإن المولدات الخلوية هي نمط من المنظومات الديناميكية المنفصلة أو غير المستمرة[21] ويمكن أن يكون لها سلوك مماثل للشواش. وهكذا فإن الكثير من نتائج نظرية المنظومات الديناميكية تنطبق على المولدات الخلوية.[/rtl]
[rtl]الفكرة الثالثة: المولدات الخلوية هي منمذجات أفضل من الرياضيات[/rtl]
[rtl]يرجع وولفرم أصول الشكل العلمي الجديد الذي يأتينا به إلى الحرمان الذي تعرض له بسبب النقد التحليلي. فبالنسبة له، وعلى عكس الرياضيات التقليدية، فإن برنامج البحث الذي يطوره في كتابه[/rtl]
[rtl]هو البرنامج الأول الذي يسمح بصياغة التأكيدات المعبرة والهامة حول سلوكات حتى ولو كانت فائقة التعقيد.[/rtl]
[rtl]ولا يبرر المجتمع العلمي لوولفرم هذا التأكيد.[/rtl]
[rtl]يقدم وولفرم في كتابه أشكالاً ناتجة عن مولدات خلوية ومنظومات مماثلة، تنمذج نمو البلورات (بشكل خاص ندف الثلج)، وتشققات المواد والتدوم في السوائل، وشكلانية النباتات والرسوم التي نلاحظها على القواقع والحيوانات. وكان سلوك النموذج يشبه في كل هذه الحالات إلى حد معين سلوك المنظومة الحقيقية. وكان ذلك مدهشًا بشكل خاص بالنسبة لندفات الثلج والقواقع البحرية. ويفرض وولفرم بقوة بشكل بصري فكرة أن قواعد بسيطة من نمط قواعد المولدات الخلوية يمكن أن تكون قاعدة هذا السلوك في الطبيعة، ويقدم عرضًا موجزًا لبعض الأفكار المعمول بها في مجال شكلانية النمو. لكن النتائج التي يصل إليها في هذا الفصل أيضًا لا تذهب إلى أبعد من تلك التي جرت منذ نحو عشرين عامًا أو أكثر، ولا نجد أي تأكيد ذي مغزى فيما يتعلق بأي من هذه الظاهرات.[/rtl]
[rtl]إن أفكار وولفرم حول الانتخاب الطبيعي غير مقنعة كثيرًا. وهو يطرح فكرته على الشكل التالي: طالما أن إنتاج التعقيد متواتر جدًا مع المولدات الخلوية البسيطة، فلا بد أن ينطبق الأمر على الطبيعة، وبالتالي ليس الانتخاب الطبيعي ضروريًا لخلق التعقيد في البيولوجيا. وهو يرى أن المنظومات البيولوجية ليست معقدة إلا لأن التطور اختبر عددًا هائلاً من البرامج البسيطة وأن هذه الأخيرة تولد في غالب الأحيان سلوكات معقدة. غير أن وولفرم كعادته لا يقدم أي إثبات أو حجة لتدعيم فكرته، كما لا يخبرنا على أي مستوى ولا أين تعمل هذه البرامج: على مستوى الخارطة المورثية؟ أم الخلية؟ وعلى الرغم من أن المولدات الخلوية تعطي نماذج مقبولة الشبه مع البقع والتلوينات البيولوجية كما ولبعض مظاهر المورفولوجية، غير أنه لا يوجد حتى الآن أي رابط ظاهر بين البرامج البسيطة والمنظومات البيولوجية المعقدة مثل الدماغ أو النظام المناعي أو الأيض الخلوي. وعلى العكس، فإنه يصبح من الواضح أكثر فأكثر أن مفهوم الإنتاج والتأقلم أساسيان من أجل فهم المنظومات التي من هذا النمط.[/rtl]
[rtl]الفكرة الرابعة: المولدات الخلوية تقدم لنا إطارًا جديدًا لفهم الطبيعة[/rtl]
[rtl]منذ بدايات العصر المعلوماتي اقترحت سيرورة الحساب كإطار تفسيري للكثير من المنظومات الطبيعية. وقد افترض العاملون في مجال الذكاء الصنعي أن الدماغ ليس في الواقع سوى آلة حاسبة وأن الفكر هو المكافئ لمعالجة المعلومات. وقد وصف فون نيومان خلال الفترة الأولى من تطبيق المولدات الخلوية التوالد البيولوجي الذاتي بعبارات حسابية[22]. ومنذ فترة أقرب اعتبرت كافة أنواع السلوك (ومنها الاستجابة الممنعة، وشبكات التنظيم بين المورثات، والسلوك الجماعي للنمل في مستعمرة) على أنها من "الحساب الطبيعي". [بل وحتى بالإمكان استخدام النمل كحاسبين][23]. ويدفع وولفرم حتى النهاية بهذا المفهوم "للحساب كإطار تفسيري للطبيعة". وهو يعتقد أن كل شيء في الطبيعة والكون يمكن أن يفسر ليس فقط بمفردات الحساب، بل وبشكل أدق بمفردات البرامج البسيطة مثل المولدات الخلوية. وهو يشرح في فصل طويل وتقني يمكن أن يعبر عن الفيزياء الأساسية (الترموديناميك والميكانيك الكمومي والنسبية، إلخ.) بمصطلحات المولدات الخلوية، وهو برنامج بحث كان قد كرس نفسه له سابقًا كل من كونراد زوس وإدوارد فردكين وتوماسو توفولي Tomasso Toffoli ونورمان مرغولوس Norman Margolus وغيرهم أيضًا[24]. وبالنسبة لوولفرم[/rtl]
[rtl]فإن برامج فائقة البساطة تكون قادرة في غالب الأحيان على تفسير جوهر الظاهرات، في الوقت الذي تبدت فيه أعمال أكثر كلاسيكية عقيمة وغير ذات جدوى.[/rtl]
[rtl]ومع ذلك، فإن العلماء التقليديين يردون على ذلك بأن مقاربته هذه لم تسمح بصياغة أي تنبؤ جديد تم إثباته، كما أن أيًا من أفكاره الهامة حول الفيزياء لا تقترح تجربة تسمح بالتحقق من هذه التجربة.[/rtl]
[rtl]الفكرة الخامسة: المولدات الخلوية قادرة على القيام بأية عملية قابلة للحساب مهما كانت[/rtl]
[rtl]كان ماثيو كوك Matthew Cook، المشارك السابق في أعمال وولفرم، هو الذي برهن أن إحدى قواعد المولدات الخلوية الأولية، والتي أعطاها وولفرم الرقم 110، يمكن أن تستخدم كأساس للحساب الكوني. وقد خصص وولفرم مكانًا هامًا في كتابه لعرض هذا البرهان. ويعطينا وولفرام خلال وصفه لهذه النتيجة رؤية مدهشة لبعض الأفكار الأساسية في المعلوماتية النظرية. إن مفهوم الحساب الكوني يرجع إلى ألان تورينغ Alan Turing ويعود إلى الثلاثينات من القرن الماضي. نقول بشكل عام عن جهاز ما إنه "كوني" أو "قابل للقيام بحساب كوني" إذا كان يستطيع تدوير أي برنامج على أية بطاقة إدخال. وقد أصبحت اليوم مقاربات الحاسبات الكونية شائعة: إنها ببساطة الحواسب القابلة للبرمجة. فالحاسب الشخصي يستطيع (إذا كان يمتلك ذاكرة كافية) أن يحسب أية معادلة مهما كانت، شرط أن تكون هذه المعادلة "قابلة للحساب". [وكان أحد أهم ما جاء به تورينغ هو البرهان أنه يوجد معادلات غير قابلة للحساب][25].[/rtl]
[rtl]في بداية الثمانينات، كان وولفرم قد اكتشف أنه من بين الـ 256 "قاعدة" ممكنة لمولِّد خلوي أولي (ذي حالتين وجارين لكل خلية)، فإن مجموعة صغيرة منها، بينها القاعدة رقم 110، كانت تؤدي إلى سلوكات مهمة بشكل خاص. وقد برهن كوك أنه من الممكن، لكل برنامج ولكل بطاقة إدخال، خلق أو إيجاد بطاقة إدخال جديدة تشتمل على بطاقة الإدخال الأصلية وعلى البرنامج؛ وتبين أن تقريب القاعدة 110 ابتداء من الحالة البدئية لها يؤدي إلى "تدوير" البرنامج إلى المدخل المعطى[26]. وبالتالي فإن القاعدة 110 هي حاسب كوني. وكانت هذه النتيجة مدهشة ومفاجئة، ويقدر وولفرم أنها تعاكس الحدس الشائع، ويقول:[/rtl]
[rtl]لقد اعتقدنا دائمًا تقريبًا... أنه من أجل الوصول إلى شيء ما بمثل إتقان الكونية لم يكن ثمة خيار آخر سوى إيجاد قواعد تكون هي نفسها خاصة ومتقنة ومجهزة تمامًا. وإحدى الاكتشافات المدهشة [برأيه] في هذا الكتاب أن الأمر ليس على هذا النحو.[/rtl]
[rtl]ويعتبر وولفرم أن هذه النتيجة ذات أهمية علمية بالغة الأهمية، وهو يرى أنه ينتج بشكل منطقي عنها أن الكونية موجودة في كل مكان في الطبيعة. ومع ذلك، فإن كونية القاعدة 110 لا تحمل الكثير مما يدهش العلماء وخاصة الأخصائيين بالحواسب؛ فبرهان كوك ليس سوى الأخير في سلسلة من الأعمال التي تبين أن أجهزة بسيطة نسبيًا (آلات تورينغ، الشبكات العصبية، المعادلات التقريبية) يمكن أن تكون حاسبات كونية. وكان فون نيومن أول من برهن أن مولدًا خلويًا يمكن أن يكون كونيًا. وكان قد بنى نموذجًا ثنائي البعد بـ 29 حالة وبـ 4 مجاورين لكل خلية، وجاء بعده غيره ممن قلصوا التعقيد إلى 4 حالات لكل خلية. وفي السبعينات حاول كونواي Conway البرهان على الطابع الكوني لـ "لعبة الحياة" (وهي ذات حالتين وثمانية مجاورين لكل خلية). وكان أبسط المولدات الخلوية الكونية المعروفة قبل عمل كوك ذو بعد واحد بسبع حالات ومجاورين اثنين لكل خلية. وبعد عمل كوك أصبحت القاعدة رقم 110 هي أبسط هذه المولدات الخلوية الكونية، وبات من الصعب علينا أن نتصور كيف يمكن لمولد خلوي كوني أن يكون أبسط من هذه القاعدة. فإذا كان من الهام جدًا أن قاعدة بهذه البساطة (وهي غير مصممة أصلاً من أجل إنجاز الحسابات) قد تبدى أنها قاعدة كونية، لكن هذه النتيجة بذاتها كما يقول التقليديون الذين يريدون تحجيم عمل وولفرم وكوك ليست سوى نتيجة ضئيلة قياسًا إلى ما كان قد سبق القيام به.[/rtl]
[rtl]بالمقابل، فإن الجوانب التطبيقية تحد من أهمية الكونية. فإذا كان قد أمكن البرهان على أن القاعدة 110 ومولدات خلوية أخرى هي مولدات كونية من حيث المبدأ، فإنه من شبه المستحيل تطبيقيًا إدراك الحالة البدئية (التي ترمِّز البرنامج والمدخل) الضرورية من أجل القيام بحساب معطى. وحتى لو كنا نعرف مثل هذه الحالة البدئية فإن الزمن الضروري للحساب يمكن أن يكون طويلاً جدًا نسبة إلى ما يتطلبه حاسب تقليدي. لقد أكد أشخاص كثيرون أن تصوري الحساب الكوني وعدم القابلية الحسابية لهما أهميتهما في العلم؛ وفي أحد الأمثلة ذات الدلالة اعتبر الفيزيائي روجر بنروز Roger Penrose أن هذين المفهومين يستبعدان إمكانية الآلات الذكية[27]. ويؤكد العلماء الكلاسيكيون هنا إنه لا يوجد فعليًا أي تفسير أو تنبؤ علمي مقبول عمومًا يلعب فيه هذا المفهومان دورًا ما.[/rtl]
[rtl]الفكرة السادسة: مبدأ التكافؤ الحسابي قانون جديد للطبيعة[/rtl]
[rtl]خصص الفصل الأخير لـ "مبدأ التكافؤ الحسابي" الذي صاغه وولفرم، والذي يرتكز على فكرة أن أفضل طريقة لفهم الصيرورات الطبيعية هي اعتبارها على أنها تنجز بحسابات. وهو يرتكز في ذلك على ثلاثة افتراضات: 1) أن سعة الحساب الكوني منتشرة جدًا في الطبيعة؛ 2) الحساب الكوني هو الحد الأعلى لتعقيد الحسابات في الطبيعة؛ 3) إن صيرورات الحساب المستخدمة في الطبيعة هي دائمًا ذات تعقيد مكافئ عمليًا.[/rtl]
[rtl]ويقبل المجتمع العلمي عمومًا بالفرضية الأولى على الرغم من أنها لم تثبت أبدًا. وحجة وولفرم هي أنه من السهل العثور على حاسبات كونية، حتى بين المولدات الخلوية البسيطة. وكذلك يقبل العلماء التقليديون عمومًا بالفرضية الثانية، لكنهم يؤكدون من جديد على قلة العناصر التي تدعمها. ويقولون إنه توجد نظريًا صيرورات قادرة على إنجاز حسابات تعجز عنها الحاسبات الكونية، غير أن هذه الصيرورات "فوق الكونية" تتطلب أعدادًا حقيقية. ولسنا نعرف إذا كانت توجد قيم في الطبيعة فعليًا يمكن أن تُضبط بواسطة صيرورات طبيعية قادرة على المضي إلى ما وراء الحساب الكوني. ويعتقد وولفرم جازمًا أن ذلك غير ممكن.[/rtl]
[rtl]أما بالنسبة للفرضية الثالثة، فيرى معظم العلماء التقليديين أن لا معنى لها بالنسبة لهم. فهم يرون أنه من المرضي جدًا أن يكون دماغنا حاسبًا كونيًا (هذا على الأقل إذا كان لدينا ذاكرة لانهائية) وأن يكون دماغ الديدان كذلك (ولو تقريبيًا)، لكنهم لا يقبلون كما يصرح بعضهم بأن يكون الحساب الذين نقوم به مكافئًا بالتعقيد لكل الحسابات التي تجري في الطبيعة.[/rtl]
[rtl]خلاصة[/rtl]
[rtl]يرى العلماء أن وولفرم لا يخرج عن الطريق السليم عندما يقدر أن نماذج وتجارب معلوماتية بسيطة يمكن أن تقود إلى تقدم علمي كبير. ويمكن ربما لهذه المقاربة أن تنتهي حتى بأن تصبح شكلاً جديدًا من العلم، لكن ذلك سيكون نتيجة مساهمات أشخاص كثيرين جدًا، بدءًا من رواد عصر المعلوماتية الأوائل مثل فون نيومان وتورينغ وروبرت وينر Robert Wiener، ثم وصولاً إلى المساهمة الشخصية لوولفرم نفسه ببرنامجه Mathematica الذي كان لا شك بالغ الأهمية في هذا المضمار. كذلك يتفق العلماء مع وولفرم على أن الأفكار الآتية من مجال المعلوماتية النظرية سوف تكون مفيدة أكثر فأكثر من أجل فهم الظاهرات الطبيعية، وخاصة في دراسة المنظومات الحية. ومع ذلك، يرى العلماء أنه بالنسبة لمحاولة وولفرم إلقاء بعض الضوء على تعقيد الطبيعة، فإن المقاربات التحليلية نجحت حتى الآن أكثر بكثير من المولدات الخلوية وتقنيات الحساب المرتبطة بها. ولدينا مثال مميز على ذلك من خلال استخدام مجموعة إعادة التنميط، وهي تقنية رياضية تسمح بالقيام بحسابات على مستويات لانهائية في آن واحد، من أجل تفسير السلوكات المعقدة لطيف واسع من المنظومات الديناميكية. [/rtl]
[rtl]يعد كتاب وولفرم شكل جديد للعلم سهل القراءة على الرغم من طوله وتعقيد محتواه. وتؤدي الصور التي يستخدمها لتبسيط المفاهيم الصعبة دورها بشكل مدهش، ولهذا فإن غير المشتغلين بالعلم يستطيعون فهم الكثير من المعطيات الواردة فيه على الرغم من صعوبتها. ونستطيع أن نفهم ردة فعل المجتمع العلمي على وولفرم من خلال تصريحاته نفسها التي يأتي بها في الكتاب: فهو يقول مثلاً:[/rtl]
[rtl]كان علي من أجل تطوير هذا الشكل الجديد للعلم أن أتجاوز دفعة واحدة الكثير من المراحل الكبيرة الأمر الذي قادني إلى العودة إلى الصفر، والإتيان بطرائق وأفكار جديدة لا تتعلق في النهاية إلا بدرجة طفيفة بما كان قد سبق العمل عليه.[/rtl]
[rtl]وفي الحقيقة فإن ما يعبر عنه وولفرم هنا هو في جوهره نتيجة أعمال أشخاص كثيرين هو أحدهم، حيث ترجع هذه الأعمال إلى عقد أو عقدين من الزمن. وهو يستعير مثلاً أعمال نورمان باكارد Norman H. Packard على ندفة الثلج دون أن يذكره، أو يرتكز في دراسته على الفراكتال أيضًا، وهي نمط آخر من البرامج البسيطة التي تولد التعقيد، دون أن يذكر ماندلبروت Mendelbrot وغيره ممن عملوا على هذه المولدات. وباختصار، يؤخذ على وولفرام خروجه عن المنهج العلمي في طرح أفكاره كما وفي الاستناد على من سبقه.[/rtl]
[rtl]لكن إذا حاولنا الابتعاد عن هذا الخلاف المنهجي، الذي قد يخفي صراعًا أعمق ناجم عن العلاقات بين العلماء أنفسهم ورؤيتهم لمستقبل العلم، فإننا ندرك أن ما أتى به وولفرم وزملاءه، حتى وإن كان يحمل منظورًا تقليصيًا يعيدنا إلى السببية البسيطة، يمثل طرحًا جديدًا لطريقة مقاربة الفكر للظاهرة الطبيعية. وعلينا هنا أن نتساءل ربما عن الدوافع النفسية العميقة التي قد تلعب دورًا هامًا في حاجاتنا إلى رفد العلم بالأسطورة والغموض دائمًا، أو إلى التخلص من عبق الأسطورة في التاريخ العلمي نهائيًا وتجريد البحث عن الحلول الممكنة البسيطة لفهم العالم من سحرها وألقها والإبقاء على بساطة قد تخلو نسبيًا من لون الغموض ومن السر اللانهائي لتطرح علينا آليات مجردة قد تخلو من المعنى في النهاية![/rtl]
[rtl]*** *** ***[/rtl]
[rtl]الجمعية الكونية السورية[/rtl]
الرجوع الى أعلى الصفحة اذهب الى الأسفل
مُشاطرة هذه المقالة على: reddit

هل هناك فيزياء جديدة في الكون؟ :: تعاليق

لا يوجد حالياً أي تعليق
 

هل هناك فيزياء جديدة في الكون؟

الرجوع الى أعلى الصفحة 

صفحة 1 من اصل 1

 مواضيع مماثلة

-
»  إتيان كلاين عالم فيزياء، مدير بحوث في مفوضية الطاقة الذرية والطاقات البديلة، من مؤلفاته "خطاب في أصل الكون" 2010 وآخر ما صدر له "المعنى الخفيّ للكون" -2011. رغم الاكتشاف تلو الآخر الذي عرفه القرن العشرين في مجال معرفة الكون، إلا أنك تبدي نوعا من الشك ف
» أسرار فيزياء الكم (2): لتكن هناك حياة
» بوزونات هيغز أم فيزياء جديدة؟
» نظرية جديدة: الكون بدأ بثقب أسود وليس بانفجار عظيم فايقة جرجس حنا
» عندما تتوقف قوانين الكون “شرح مبسط لنظرية الأكوان المتعددة و كيفية نشوء أكوان جديدة".....ترجـمة:Alan Hammet

صلاحيات هذا المنتدى:تستطيع الرد على المواضيع في هذا المنتدى
** متابعات ثقافية متميزة ** Blogs al ssadh :: دراسات و ابحاث-
إرسال موضوع جديد   إرسال مساهمة في موضوعانتقل الى: