** متابعات ثقافية متميزة ** Blogs al ssadh
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

** متابعات ثقافية متميزة ** Blogs al ssadh

موقع للمتابعة الثقافية العامة
 
Parodies of Ontological Arguments I_icon_mini_portalالرئيسيةالأحداثالمنشوراتأحدث الصورالتسجيلدخول



مدونات الصدح ترحب بكم وتتمنى لك جولة ممتازة

وتدعوكم الى دعمها بالتسجيل والمشاركة

عدد زوار مدونات الصدح

إرسال موضوع جديد   إرسال مساهمة في موضوع
 

 Parodies of Ontological Arguments

اذهب الى الأسفل 
كاتب الموضوعرسالة
free men
فريق العمـــــل *****
free men


التوقيع : رئيس ومنسق القسم الفكري

عدد الرسائل : 1500

الموقع : center d enfer
تاريخ التسجيل : 26/10/2009
وســــــــــام النشــــــــــــــاط : 6

Parodies of Ontological Arguments Empty
12032016
مُساهمةParodies of Ontological Arguments

Positive ontological arguments—i.e., arguments FOR the existence of god(s)—invariably admit of various kinds of parodies, i.e., parallel arguments which seem at least equally acceptable to non-theists, but which establish absurd or contradictory conclusions. For many positive ontological arguments, there are parodies which purport to establish the non-existence of god(s); and for many positive ontological arguments there are lots (usually a large infinity!) of similar arguments which purport to establish the existence of lots (usally a large infinity) of distinct god-like beings. Here are some modest examples:
(1) By definition, God is a non-existent being who has every (other) perfection. Hence God does not exist.
(2) I conceive of a being than which no greater can be conceived except that it only ever creates nuniverses. If such a being does not exist, then we can conceive of a greater being—namely, one exactly like it which does exist. But I cannot conceive of a being which is greater in this way. Hence, a being than which no greater can be conceived except that it only ever creates n universes exists.
(3) It is possible that God does not exist. God is not a contingent being, i.e., either it is not possible that God exists, or it is necessary that God exists. Hence it is not possible that God exists. Hence God does not exist.
(4) It is analytic, necessary, and a priori that the F G is F. Hence, the existent perfect being who creates exactly n universes is existent. Hence the perfect being who creates exactly n universes exists.
There are many kinds of parodies on Ontological Arguments. The aim is to construct arguments which non-theists can reasonably claim to have no more reason to accept than the original Ontological Arguments themselves. Of course, theists may well be able to hold that the originals are sound, and the parodies not—but that is an entirely unrelated issue. (All theists—and no non-theists—should grant that the following argument is sound, given that the connectives are to be interpretted classically: “Either 2+2=5, or God exists. Not 2+2=5. Hence God exists.” It should be completely obvious that this argument is useless.)
There are some very nice parodic discussions of Ontological Arguments in the literature. A particularly pretty one is due to Raymond Smullyan (1984), in which the argument is attributed to “the unknown Dutch theologian van Dollard”. A relatively recent addition to the genre is described in Grey 2000, though the date of its construction is uncertain. It is the work of Douglas Gasking, one-time Professor of Philosophy at the University of Melbourne (with emendations by William Grey and Denis Robinson):
[list="margin-top: 0.5em; color: rgb(26, 26, 26); font-family: serif; font-size: 16.5px; line-height: 21px; background-color: rgb(255, 255, 255);"]
[*]The creation of the world is the most marvellous achievement imaginable.

[*]The merit of an achievement is the product of (a) its intrinsic quality, and (b) the ability of its creator.

[*]The greater the disability or handicap of the creator, the more impressive the achievement.

[*]The most formidable handicap for a creator would be non-existence.

[*]Therefore, if we suppose that the universe is the product of an existent creator, we can conceive a greater being—namely, one who created everything while not existing.

[*]An existing God, therefore, would not be a being than which a greater cannot be conceived, because an even more formidable and incredible creator would be a God which did not exist.

[*](Hence) God does not exist.

[/list]
This parody—at least in its current state—seems to me to be inferior to other parodies in the literature, including the early parodies of Gaunilo and Caterus. To mention but one difficulty, while we might suppose that it would be a greater achievement to create something if one did not exist than if one did exist, it doesn't follow from this that a non-existent creator is greater (quabeing) than an existent creator. Perhaps it might be replied that this objection fails to take the first premise into account: if the creation of the world really is “the most marvellous achievement imaginable”, then surely there is some plausibility to the claim that the creator must have been non-existent (since that would make the achievement more marvellous than it would otherwise have been). But what reason is there to believe that the creation of the world is “the most marvellous achievement imaginable”, in the sense which is required for this argument? Surely it is quite easy to imagine even more marvellous achievements—e.g., the creation of many worlds at least as good as this one! (Of course, one might also want to say that, in fact, one cannot conceive of a non-existent being's actually creating something: that is literally inconceivable. Etc.)
Chambers 2000 and Siegwart 2014 provide nice, recent discussions of Gaunilo's parody of theProslogion II argument.

6. Gödel's Ontological Argument

There is a small, but steadily growing, literature on the ontological arguments which Gödel developed in his notebooks, but which did not appear in print until well after his death. These arguments have been discussed, annotated and amended by various leading logicians: the upshot is a family of arguments with impeccable logical credentials. (Interested readers are referred to Sobel 1987, Anderson 1990, Adams 1995b, and Hazen 1999 for the history of these arguments, and for the scholarly annotations and emendations.) Here, I shall give a brief presentation of the version of the argument which is developed by Anderson, and then make some comments on thatversion. This discussion follows the presentation and discussion in Oppy 1996, 2000.
اقتباس :
Definition 1: x is God-like if and only if x has as essential properties those and only those properties which are positive
Definition 2: A is an essence of x if and only if for every property Bx has B necessarily if and only if A entails B
Definition 3: x necessarily exists if and only if every essence of x is necessarily exemplified
Axiom 1: If a property is positive, then its negation is not positive.
Axiom 2: Any property entailed by—i.e., strictly implied by—a positive property is positive
Axiom 3: The property of being God-like is positive
Axiom 4: If a property is positive, then it is necessarily positive
Axiom 5: Necessary existence is positive
Axiom 6: For any property P, if P is positive, then being necessarily P is positive.
Theorem 1: If a property is positive, then it is consistent, i.e., possibly exemplified.
Corollary 1: The property of being God-like is consistent.
Theorem 2: If something is God-like, then the property of being God-like is an essence of that thing.
Theorem 3: Necessarily, the property of being God-like is exemplified.
Given a sufficiently generous conception of properties, and granted the acceptability of the underlying modal logic, the listed theorems do follow from the axioms. (This point was argued in detail by Dana Scott, in lecture notes which circulated for many years and which were transcribed in Sobel 1987 and published in Sobel 2004. It is also made by Sobel, Anderson, and Adams.) So, criticisms of the argument are bound to focus on the axioms, or on the other assumptions which are required in order to construct the proof.
Some philosophers have denied the acceptability of the underlying modal logic. And some philosophers have rejected generous conceptions of properties in favour of sparse conceptions according to which only some predicates express properties. But suppose that we adopt neither of these avenues of potential criticism of the proof. What else might we say against it?
One important point to note is that no definition of the notion of “positive property” is supplied with the proof. At most, the various axioms which involve this concept can be taken to provide apartial implicit definition. If we suppose that the “positive properties” form a set, then the axioms provide us with the following information about this set:
[list="margin-top: 0.5em; color: rgb(26, 26, 26); font-family: serif; font-size: 16.5px; line-height: 21px; background-color: rgb(255, 255, 255);"]
[*]If a property belongs to the set, then its negation does not belong to the set.

[*]The set is closed under entailment.

[*]The property of having as essential properties just those properties which are in the set is itself a member of the set.

[*]The set has exactly the same members in all possible worlds.

[*]The property of necessary existence is in the set.

[*]If a property is in the set, then the property of having that property necessarily is also in the set.

[/list]
On Gödel's theoretical assumptions, we can show that any set which conforms to (1)–(6) is such that the property of having as essential properties just those properties which are in that set is exemplified. Gödel wants us to conclude that there is just one intuitive, theologically interesting set of properties which is such that the property of having as essential properties just the properties in that set is exemplified. But, on the one hand, what reason do we have to think that there is any theologically interesting set of properties which conforms to the Gödelian specification? And, on the other hand, what reason do we have to deny that, if there is one set of theologically interesting set of properties which conforms to the Gödelian specification, then there are many theologically threatening sets of properties which also conform to that specification?
In particular, there is some reason to think that the Gödelian ontological argument goes through just as well—or just as badly—with respect to other sets of properties (and in ways which are damaging to the original argument). Suppose that there is some set of independent properties {I,G1G2, …} which can be used to generate the set of positive properties by closure under entailment and “necessitation”. (“Independence” means: no one of the properties in the set is entailed by all the rest. “Necessitation” means: if P is in the set, then so is necessarily having PIis the property of having as essential properties just those properties which are in the set. G1G2, … are further properties, of which we require at least two.) Consider any proper subset of the set {G1G2, …}—{H1H2, …}, say—and define a new generating set {I*, H1H2, …}, where I* is the property of having as essential properties just those properties which are in the newly generated set. A “proof” parallel to that offered by Gödel “establishes” that there is a being which has as essential properties just those properties in this new set. If there are as few as 7 independent properties in the original generating set, then we shall be able to establish the existence of 720 distinct“God-like” creatures by the kind of argument which Gödel offers. (The creatures are distinct because each has a different set of essential properties.)
Even if the above considerations are sufficient to cast doubt on the credentials of Gödel's “proof”, they do not pinpoint where the “proof” goes wrong. If we accept that the role of Axioms 1, 2, 4, and 6 is really just to constrain the notion of “positive property” in the right way—or, in other words, if we suppose that Axioms 1, 2, 4, and 6 are “analytic truths” about “positive properties”—then there is good reason for opponents of the “proof” to be sceptical about Axioms 3 and 5. Kant would not have been happy with Axiom 5; and there is at least some reason to think that whether the property of being God-like is “positive” ought to depend upon whether or not there is a God-like being.

7. A Victorious Ontological Argument?

The “victorious” modal ontological argument of Plantinga 1974 goes roughly as follows: Say that an entity possesses “maximal excellence” if and only if it is omnipotent, omnscient, and morally perfect. Say, further, that an entity possesses “maximal greatness” if and only if it possesses maximal excellence in every possible world—that is, if and only if it is necessarily existent and necessarily maximally excellent. Then consider the following argument:
[list="margin-top: 0.5em; color: rgb(26, 26, 26); font-family: serif; font-size: 16.5px; line-height: 21px; background-color: rgb(255, 255, 255);"]
[*]There is a possible world in which there is an entity which possesses maximal greatness.

[*](Hence) There is an entity which possesses maximal greatness.

[/list]
Under suitable assumptions about the nature of accessibility relations between possible worlds, this argument is valid: from it is possible that it is necessary that p, one can infer that it is necessary that p. Setting aside the possibility that one might challenge this widely accepted modal principle, it seems that opponents of the argument are bound to challenge the acceptability of the premise.
And, of course, they do. Let's just run the argument in reverse.
[list="margin-top: 0.5em; color: rgb(26, 26, 26); font-family: serif; font-size: 16.5px; line-height: 21px; background-color: rgb(255, 255, 255);"]
[*]There is no entity which possesses maximal greatness.

[*](Hence) There is no possible world in which there is an entity which possesses maximal greatness.

[/list]
Plainly enough, if you do not already accept the claim that there is an entity which possesses maximal greatness, then you won't agree that the first of these arguments is more acceptable than the second. So, as a proof of the existence of a being which posseses maximal greatness, Plantinga's argument seems to be a non-starter.
Perhaps somewhat surprisingly, Plantinga himself agrees: the “victorious” modal ontological argument is not a proof of the existence of a being which possesses maximal greatness. But how, then, is it “victorious”? Plantinga writes: “Our verdict on these reformulated versions of St. Anselm's argument must be as follows. They cannot, perhaps, be said to prove or establish their conclusion. But since it is rational to accept their central premise, they do show that it is rational to accept that conclusion” (Plantinga 1974, 221).
It is pretty clear that Plantinga's argument does not show what he claims that it shows. Consider, again, the argument: “Either God exists, or 2+2=5. It is not the case that 2+2=5. So God exists.” It is just a mistake for a theist to say: “Since the premise is true (and the argument is valid), this argument shows that the conclusion of the argument is true”. No-one thinks that that argumentshows any such thing. Similarly, it is just a mistake for a theist to say: “Since it is rational to accept the premise (and the argument is valid), this argument shows that it is rational to accept the conclusion of the argument”. Again, no one thinks that that argument shows any such thing. But why don't these arguments show the things in question? There is room for argument about this. But it is at least plausible to claim that, in each case, any even minimally rational person who has doubts about the claimed status of the conclusion of the argument will have exactly the same doubts about the claimed status of the premise. If, for example, I doubt that it is rational to accept the claim that God exists, then you can be quite sure that I will doubt that it is rational to accept the claim that either 2+2=5 or God exists. But, of course, the very same point can be made about Plantinga's argument: anyone with even minimal rationality who understands the premise and the conclusion of the argument, and who has doubts about the claim that there is an entity which possesses maximal greatness, will have exactly the same doubts about the claim that there is a possible world in which there is an entity which possesses maximal greatness.
For further discussion of Plantinga's argument, see—for example—Adams 1988, Chandler 1993, Oppy 1995 (70–78, 248–259), Tooley 1981, and van Inwagen 1977)
الرجوع الى أعلى الصفحة اذهب الى الأسفل
مُشاطرة هذه المقالة على: reddit

Parodies of Ontological Arguments :: تعاليق

لا يوجد حالياً أي تعليق
 

Parodies of Ontological Arguments

الرجوع الى أعلى الصفحة 

صفحة 1 من اصل 1

 مواضيع مماثلة

-
» Ontological Arguments
» Ontological Arguments in the 21st Century
» St. Anselm's Ontological Argument
» Arguments for Value Incommensurability
» Arguments

صلاحيات هذا المنتدى:تستطيع الرد على المواضيع في هذا المنتدى
** متابعات ثقافية متميزة ** Blogs al ssadh :: Pensée-
إرسال موضوع جديد   إرسال مساهمة في موضوعانتقل الى: