** متابعات ثقافية متميزة ** Blogs al ssadh
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

** متابعات ثقافية متميزة ** Blogs al ssadh

موقع للمتابعة الثقافية العامة
 
HARVIST 	HARVIST  I_icon_mini_portalالرئيسيةالأحداثالمنشوراتأحدث الصورالتسجيلدخول



مدونات الصدح ترحب بكم وتتمنى لك جولة ممتازة

وتدعوكم الى دعمها بالتسجيل والمشاركة

عدد زوار مدونات الصدح

إرسال موضوع جديد   إرسال مساهمة في موضوع
 

 HARVIST HARVIST

اذهب الى الأسفل 
كاتب الموضوعرسالة
ماردة
" ثـــــــــــــــــــــــــائــــــــــر "
HARVIST 	HARVIST  Biere2
ماردة


عدد الرسائل : 201

تاريخ التسجيل : 26/10/2010
وســــــــــام النشــــــــــــــاط : 2

HARVIST 	HARVIST  Empty
02112010
مُساهمةHARVIST HARVIST

HARVIST 	HARVIST  Topnavoff_04 HARVIST 	HARVIST  Topnavoff_05
HARVIST 	HARVIST  Harvist_banner
HARVIST 	HARVIST  Btopnav_01_off HARVIST 	HARVIST  Btopnav_02_off HARVIST 	HARVIST  Btopnav_03_off HARVIST 	HARVIST  Btopnav_04_off HARVIST 	HARVIST  Btopnav_05_off
HARVIST 	HARVIST  Spacer
HARVIST 	HARVIST  Spacer HARVIST 	HARVIST  Spacer HARVIST 	HARVIST  Spacer
HARVIST 	HARVIST  Spacer
People
Papers Organizations

  • JPL Section 388
  • Univ. of CO, Denver
  • Univ. of NM
Sponsors

News

Our paper on predicting crop yield using a multiple-instance regression approach, "Multiple-Instance Regression with Structured Data", was accepted to the 4th International Workshop on Mining Complex Data and will be presented in December, 2008 (Pisa, Italy). In September 2007, we made our final delivery of PixelLearn to the USDA's United States Salinity Laboratory. They are conducting a study that involves connecting ground estimates of soil salinity with orbital remote sensing data, and PixelLearn now provides regression algorithms to accomplish this goal.
About HARVIST

Remote sensing instruments in Earth orbit provide a rich source of information about current agricultural conditions. Observed over time, patterns emerge that can assist in the prediction of future conditions, such as the yield expected for a given crop at the end of the growing season. It is suspected that these predictions can be made more accurate by incorporating other sources of information, such as weather conditions from ground stations, soil properties, etc. The tools required to access and combine large amounts of data from multiple sources, at different spatial resolutions, are not readily available. The HARVIST (Heterogeneous Agricultural Research Via Interactive, Scalable Technology) project seeks to address this lack by demonstrating the technology required to perform large scale studies of the interactions between agriculture and climate. Our goal is to integrate multiple Earth Science data sources into a single graphical user interface that allows for the investigation of connections between different variables. In particular, we focus on relationships between weather and crop yield, but the system we are creating will be capable of integrating data for other studies as well. The data sources are heterogeneous in that they contain information at different spatial, spectral, and temporal resolutions. Specifically, we aim to combine support vector machines (SVMs; classification), clustering (discovery), and multivariate spatial modeling (regression and prediction) methods into a single, interactive package to explore the impact of variables on crop yield.
HARVIST 	HARVIST  System
PixelLearn

HARVIST uses the graphical PixelLearn system to conduct perform interactive data labeling and analysis. In the screenshot below, a remote sensing image of California's Central Valley is shown. The user has labeled several pixels in the left panel by "painting" colored labels on them. Here, green indicates vegetation, blue is water, and black is land. After training an SVM classifier, the output is shown in the right, in which every pixel in the image has been assigned to the class that best describes it. The user can iterate, labeling more pixels and examining the new SVM output, until the result is satisfactory. PixelLearn also provides data clustering and regression capabilities.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
مُشاطرة هذه المقالة على: reddit

HARVIST HARVIST :: تعاليق

لا يوجد حالياً أي تعليق
 

HARVIST HARVIST

الرجوع الى أعلى الصفحة 

صفحة 1 من اصل 1

صلاحيات هذا المنتدى:تستطيع الرد على المواضيع في هذا المنتدى
** متابعات ثقافية متميزة ** Blogs al ssadh :: منبر البحوث المتخصصة والدراسات العلمية يشاهده 23456 زائر-
إرسال موضوع جديد   إرسال مساهمة في موضوعانتقل الى: