** متابعات ثقافية متميزة ** Blogs al ssadh
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.
** متابعات ثقافية متميزة ** Blogs al ssadh

موقع للمتابعة الثقافية العامة
 
الرئيسيةالرئيسية  الأحداثالأحداث  المنشوراتالمنشورات  أحدث الصورأحدث الصور  التسجيلالتسجيل  دخول  



مدونات الصدح ترحب بكم وتتمنى لك جولة ممتازة

وتدعوكم الى دعمها بالتسجيل والمشاركة

عدد زوار مدونات الصدح

إرسال موضوع جديد   إرسال مساهمة في موضوع
 

  Belief Revision Theory

اذهب الى الأسفل 
كاتب الموضوعرسالة
free men
فريق العمـــــل *****
free men


التوقيع : رئيس ومنسق القسم الفكري

عدد الرسائل : 1500

الموقع : center d enfer
تاريخ التسجيل : 26/10/2009
وســــــــــام النشــــــــــــــاط : 6

 Belief Revision Theory Empty
15032016
مُساهمة Belief Revision Theory

We have moved from degrees of belief to belief, and found ranking theory to provide a link between these two notions. While some philosophers (most probabilists, e.g. Jeffrey 1970) hold the view that degrees of belief are more basic than beliefs, others adopt the opposite view. This opposite view is generally adopted in traditional epistemology, which is mainly concerned with the notion of knowledge and its tripartite definition as justified true belief. Belief in this sense comes in three “degrees”: the ideal doxastic agent either believes [ltr]AA[/ltr], or else she believes [ltr]W∖AW∖A[/ltr]and thus disbelieves [ltr]AA[/ltr], or else she believes neither [ltr]AA[/ltr] nor [ltr]W∖AW∖A[/ltr] and thus suspends judgment with respect to [ltr]AA[/ltr]. Ordinary doxastic agents sometimes believe both [ltr]AA[/ltr] and [ltr]W∖AW∖A[/ltr], but we assume that they should not do so, and hence ignore this case.
According to this view, an agent’s doxastic state is characterized by the set of propositions she believes, her belief set. Such a belief set is required to be consistent and deductively closed (Hintikka 1961 and the entry on see the entry on epistemic logic). Here a belief set is usually represented as a set of sentences from a language [ltr]LL[/ltr] rather than as a set of propositions. The question addressed by belief revision theory (Alchourrón & Gärdenfors & Makinson 1985, Gärdenfors 1988, Gärdenfors & Rott 1995) is how an ideal doxastic agent should revise her belief set [ltr]B⊆LB⊆L[/ltr] if she learns new information in the form of a sentence [ltr]α∈Lα∈L[/ltr]. If [ltr]αα[/ltr] is consistent with [ltr]BB[/ltr] in the sense that [ltr]¬α¬α[/ltr] is not derivable from [ltr]BB[/ltr], the agent should simply add [ltr]αα[/ltr] to [ltr]BB[/ltr] and close this set under (classical) logical consequence. In this case her new belief set, i.e., her old belief set [ltr]BB[/ltr] revised by the new information [ltr]αα[/ltr], [ltr]B∗αB∗α[/ltr], is the set of logical consequences of [ltr]B∪{α}B∪{α}[/ltr], [ltr]B∗α=Cn(B∪{α})={β∈L:B∪{α}⊢β}B∗α=Cn(B∪{α})={β∈L:B∪{α}⊢β}[/ltr].
Things get interesting when the new information [ltr]αα[/ltr] contradicts the old belief set [ltr]BB[/ltr]. Here the basic idea is that the agent’s new belief set [ltr]B∗αB∗α[/ltr] should contain the new information [ltr]αα[/ltr] and as many of the old beliefs in [ltr]BB[/ltr] as is allowed by the requirement that the new belief set be consistent and deductively closed. To state this more precisely, let us introduce the notion of acontraction. To contract a statement [ltr]αα[/ltr] from a belief set [ltr]BB[/ltr] is to give up the belief that [ltr]αα[/ltr] is true, but to keep as many of the remaining beliefs from [ltr]BB[/ltr] while ensuring consistency and deductive closure. Where [ltr]B÷αB÷α[/ltr] is the agent’s new belief set after contracting her old belief set [ltr]BB[/ltr] by [ltr]αα[/ltr], the A(lchourrón)G(ärdenfors)M(akinson) postulates for contraction [ltr]÷÷[/ltr] can be stated as follows. (Note that [ltr]∗[/ltr] as well as [ltr]÷÷[/ltr] are functions from [ltr]℘(L)×L℘(L)×L[/ltr] into [ltr]℘(L)℘(L)[/ltr].)
For every set of sentences [ltr]B⊆LB⊆L[/ltr] and any sentences [ltr]α,β∈Lα,β∈L[/ltr]:
[ltr](÷1)(÷1)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr], then [ltr]B÷α=Cn(B÷α)B÷α=Cn(B÷α)[/ltr]Deductive Closure
[ltr](÷2)(÷2)[/ltr][ltr]B÷α⊆BB÷α⊆B[/ltr]Inclusion
[ltr](÷3)(÷3)[/ltr]If [ltr]α∉α∉[/ltr] Cn[ltr](B)(B)[/ltr], then [ltr]B÷α=BB÷α=B[/ltr]Vacuity
[ltr](÷4)(÷4)[/ltr]If [ltr]α∉α∉[/ltr] Cn[ltr](∅)(∅)[/ltr], then [ltr]α∉Cn(B÷α)α∉Cn(B÷α)[/ltr]Success
[ltr](÷5)(÷5)[/ltr]If [ltr]Cn({α})=Cn({β})Cn({α})=Cn({β})[/ltr], then [ltr]B÷α=B÷βB÷α=B÷β[/ltr]Preservation
[ltr](÷6)(÷6)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr], then [ltr]B⊆Cn((B÷α)∪{α})B⊆Cn((B÷α)∪{α})[/ltr]Recovery
[ltr](÷7)(÷7)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr], then [ltr](B÷α)∩(B÷β)⊆B÷(α∧β)(B÷α)∩(B÷β)⊆B÷(α∧β)[/ltr]
[ltr](÷8)(÷8)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr] and [ltr]α∉B÷(α∧β)α∉B÷(α∧β)[/ltr], then [ltr]B÷(α∧β)⊆B÷αB÷(α∧β)⊆B÷α[/ltr]
[ltr]÷1÷1[/ltr] says that the contraction of [ltr]BB[/ltr] by [ltr]αα[/ltr], [ltr]B÷αB÷α[/ltr], should be deductively closed, if [ltr]BB[/ltr] is deductively closed. [ltr]÷2÷2[/ltr] says that a contraction should not give rise to new beliefs not previously held. [ltr]÷3÷3[/ltr] says that the ideal doxastic agent should not change her old beliefs when she gives up a sentence she does not believe to begin with. [ltr]÷4÷4[/ltr] says that, unless [ltr]αα[/ltr] is tautological, the agent should really give up her belief that [ltr]αα[/ltr] is true if she contracts by [ltr]αα[/ltr]. [ltr]÷5÷5[/ltr] says that the particular formulation of the sentence the agent gives up should not matter; in other words, the objects of belief should really be propositions rather than sentences. [ltr]÷6÷6[/ltr] says the agent should recover her old beliefs if she first contracts by [ltr]αα[/ltr] and then adds [ltr]αα[/ltr] again, provided [ltr]BB[/ltr] is deductively closed. According to [ltr]÷7÷7[/ltr] the agent should not give up more beliefs when contracting by [ltr]α∧βα∧β[/ltr] than the ones she gives up when she contracts by [ltr]αα[/ltr] alone as well as when she contracts by [ltr]ββ[/ltr] alone. [ltr]÷8÷8[/ltr]finally requires the agent not to give up more beliefs than necessary: if the agent already gives up [ltr]αα[/ltr] when she contracts by [ltr]α∧βα∧β[/ltr], she should not give up more when contracting by [ltr]αα[/ltr] than she gives up when contracting by [ltr]α∧βα∧β[/ltr]. Rott (2001) discusses many further principles and variants of the above.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
مُشاطرة هذه المقالة على: reddit

Belief Revision Theory :: تعاليق

free men
رد: Belief Revision Theory
مُساهمة الثلاثاء مارس 15, 2016 11:15 am من طرف free men
Given the notion of a contraction we can now state what the agent’s new belief set, i.e., her old belief set [ltr]BB[/ltr] revised by the new information [ltr]αα[/ltr], [ltr]B∗αB∗α[/ltr], should look like. First, the agent should clear [ltr]BB[/ltr] to make it consistent with [ltr]αα[/ltr]. That is, first the agent should contract [ltr]BB[/ltr] by [ltr]¬α¬α[/ltr]. Then she should simply add [ltr]αα[/ltr] and close under (classical) logical consequence. This gives us the agent’s new belief set [ltr]B∗αB∗α[/ltr], her old belief set [ltr]BB[/ltr] revised by [ltr]αα[/ltr]. The recipe just described is known as theLevi identity:
[ltr]B∗α=Cn((B÷¬α)∪{α})B∗α=Cn((B÷¬α)∪{α})[/ltr]
Revision [ltr]∗[/ltr] defined in this way satisfies a corresponding list of properties. For every set of sentences [ltr]B⊆LB⊆L[/ltr] and any sentences [ltr]α,β∈Lα,β∈L[/ltr] (where the contradictory sentence [ltr]⊥[/ltr] can be defined as the negation of the tautological sentence [ltr]⊤[/ltr], i.e., [ltr]¬⊤)¬⊤)[/ltr]:
[ltr](∗1)(∗1)[/ltr] [ltr]B∗α=Cn(B∗α)B∗α=Cn(B∗α)[/ltr]
[ltr](∗2)(∗2)[/ltr][ltr]α∈B∗αα∈B∗α[/ltr]
[ltr](∗3)(∗3)[/ltr]If [ltr]¬α∉Cn(B)¬α∉Cn(B)[/ltr], then [ltr]B∗α=Cn(B∪{α})B∗α=Cn(B∪{α})[/ltr]
[ltr](∗4)(∗4)[/ltr]If [ltr]¬α∉Cn(∅)¬α∉Cn(∅)[/ltr], then [ltr]⊥∉B∗α⊥∉B∗α[/ltr]
[ltr](∗5)(∗5)[/ltr]If [ltr]Cn({α})=Cn({α})Cn({α})=Cn({α})[/ltr], then [ltr]B∗α=B∗βB∗α=B∗β[/ltr]
[ltr](∗6)(∗6)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr], then [ltr](B∗α)∩B=B÷¬α(B∗α)∩B=B÷¬α[/ltr]
[ltr](∗7)(∗7)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr], then [ltr]B∗(α∧β)⊆Cn(B∗α∪{β})B∗(α∧β)⊆Cn(B∗α∪{β})[/ltr]
[ltr](∗8)(∗8)[/ltr]If [ltr]B=Cn(B)B=Cn(B)[/ltr] and [ltr]¬β∉B∗α¬β∉B∗α[/ltr], then [ltr]Cn(B∗α∪{β})⊆B∗(α∧β)Cn(B∗α∪{β})⊆B∗(α∧β)[/ltr]
In standard belief revision theory the new belief set is always deductively closed, as required by [ltr]∗1∗1[/ltr]. This requirement can be dropped by using belief bases instead of belief sets (Hansson 1999). In standard belief revision theory the new information is always part of the new belief set, as required by [ltr]∗2∗2[/ltr]. Non-prioritized belief revision relaxes this requirement (Hansson 1999). The idea is that the idealdoxastic agent might consider the new information to be too implausible to be added and decide to reject it; or she might add only a sufficiently plausible part of the new information; or she might add the new information and then check for consistency, which makes her give up part or all of the new information again, because her old beliefs turn out to be moreentrenched.
The notion of entrenchment provides the connection to degrees of belief. In order to decide which part of her belief set she wants to give up, belief revision theory equips the ideal doxastic agent agent with an entrenchment ordering. Technically, this is a relation [ltr]≼[/ltr] on [ltr]LL[/ltr] (i.e., [ltr]≼⊆L)≼⊆L)[/ltr]such that for all [ltr]α,β,γα,β,γ[/ltr] in [ltr]LL[/ltr]:
[ltr](≼1)(≼1)[/ltr]If [ltr]α≼βα≼β[/ltr] and [ltr]β≼γβ≼γ[/ltr], then [ltr]α≼γα≼γ[/ltr]Transitivity
[ltr](≼2)(≼2)[/ltr]If [ltr]α⊢βα⊢β[/ltr], then [ltr]α≼βα≼β[/ltr]Dominance
[ltr](≼3)(≼3)[/ltr][ltr]α≼α∧βα≼α∧β[/ltr] or [ltr]β≼α∧ββ≼α∧β[/ltr]Conjunctivity
[ltr](≼4)(≼4)[/ltr]If [ltr]⊥∉Cn(B)⊥∉Cn(B)[/ltr], then [ltr][α∉B[α∉B[/ltr] if and only if for all [ltr]ββ[/ltr] in [ltr]L:α≼β]L:α≼β][/ltr]Minimality
[ltr](≼5)(≼5)[/ltr]If for all [ltr]αα[/ltr] in [ltr]L:α≼βL:α≼β[/ltr], then [ltr]β∈Cn(∅)β∈Cn(∅)[/ltr]Maximality
[ltr]BB[/ltr] is a fixed set of background beliefs. Given an entrenchment ordering [ltr]≼[/ltr] on [ltr]LL[/ltr] and letting [ltr]α[size=16]⪱βα⪱β[/ltr]hold just in case [ltr]α≼βα≼β[/ltr] and [ltr]β⋠αβ⋠α[/ltr], we can define a revision operator [ltr]∗[/ltr] as follows:[/size]
[ltr]B∗α={β∈B:¬α[size=16]⪱β}∪{α}B∗α={β∈B:¬α⪱β}∪{α}[/ltr][/size]
Then one can prove the following representation theorem:

Theorem 1
Let [ltr][size=18]LL[/ltr]
 be a language, let [ltr]B⊆LB⊆L[/ltr] be a set of sentences, and let [ltr]α∈Lα∈L[/ltr] be a sentence. Each entrenchment ordering [ltr]≼[/ltr] on [ltr]LL[/ltr] induces a revision operator [ltr]∗[/ltr] on [ltr]LL[/ltr] satisfying [ltr]∗1∗1[/ltr][ltr]∗8∗8[/ltr] by defining

[/size]
[ltr]B∗α={β∈B:¬αβ}∪{α}.B∗α={β∈B:¬α⪱β}∪{α}.[/ltr]
[size]
For each revision operator [ltr]∗[/ltr] on [ltr]LL[/ltr] satisfying [ltr]∗1∗1[/ltr][ltr]∗8∗8[/ltr] there is an entrenchment ordering [ltr]≼[/ltr] on [ltr]LL[/ltr]that induces [ltr]∗[/ltr] in exactly this way.[/size]
free men
رد: Belief Revision Theory
مُساهمة الثلاثاء مارس 15, 2016 11:16 am من طرف free men
Grove (1988) proves an analogous representation theorem for a systems of spheres semantics that generalizes Lewis’ (1973) semantics for counterfactuals. Segerberg (1995) formulates the AGM approach in the framework of dynamic doxastix logic. Lindström & Rabinowicz (1999) extend this to iterated belief revision.
It is, however, fair to say that belief revision theorists distinguish between degrees of belief and entrenchment. Entrenchment, so they say, characterizes the agent’s unwillingness to give up a particular qualitative belief, which may be different from her degree of belief for the respective sentence or proposition. Although this distinction might violate Occam’s razor by introducing an additional doxastic level, it corresponds to Spohn’s parallelism (Spohn 2009, sct. 3) between subjective probabilities and ranking functions as well as Stalnaker’s stance in his (1996, sct. 3). Weisberg (2011, sct. 7) offers a similar distinction.
If the agent’s doxastic state is represented by a regular ranking function [ltr]ϱϱ[/ltr] (on a field of propositions over the set of models [ltr]Mod[size=13]LModL[/ltr] for the language [ltr]LL[/ltr], as explained in section 1.3) the ordering [ltr]ϱ≼ϱ[/ltr] that is defined for all [ltr]α,βα,β[/ltr] in [ltr]LL[/ltr] by[/size]
[ltr]α≼[size=13]ϱβ if and only if ϱ(Mod(¬α))≤ϱ(Mod(¬β))α≼ϱβ if and only if ϱ(Mod(¬α))≤ϱ(Mod(¬β))[/ltr][/size]
is an entrenchment ordering for [ltr]B={α∈L:ϱ(Mod(¬α))>0}B={α∈L:ϱ(Mod(¬α))>0}[/ltr]. Ranking theory thus covers AGM belief revision theory as a special case (Rott 2009a defines, among others, entrenchment orderings and ranking functions for beliefs as well as for disbeliefs and non-beliefs). It is important to see how ranking theory goes beyond AGM belief revision theory. In the latter theory the agent’s prior doxastic state is characterized by a belief set [ltr]BB[/ltr] together with an entrenchment ordering [ltr]≼[/ltr]. If the agent receives new information in the form of a proposition [ltr]AA[/ltr], the entrenchment ordering is used to turn the old belief set into a new one, viz. [ltr]B∗AB∗A[/ltr]. The agent’s posterior doxastic state is thus characterized by a belief set only. The entrenchment ordering itself is not updated. Therefore AGM belief revision theory cannot handle iterated belief changes. To the extent that belief revision is not simply a one step process, AGM belief revision theory is thus no theory of belief revision at all. (The analogous situation in terms of subjective probabilities would be to characterize the agent’s prior doxastic state by a set of propositions together with a subjective probability measure, and to use that measure to update the set of propositions without ever updating the probability measure itself.)
In ranking theory the agent’s prior doxastic state is characterized by a ranking function [ltr]ϱϱ[/ltr] (on a field over [ltr]Mod[size=13]L)ModL)[/ltr]. This function determines the agent’s prior belief set [ltr]BB[/ltr], and so there is no need to specify [ltr]BB[/ltr] in addition to [ltr]ϱϱ[/ltr]. If the agent receives new information in form of a proposition[ltr]AA[/ltr], as AGM belief revision theory has it, there are infinitely many ways to update her ranking function that all give rise to the same new belief set [ltr]B∗AB∗A[/ltr]. Let [ltr]nn[/ltr] be an arbitrary positive number in [ltr]N∪{∞}N∪{∞}[/ltr]. Then Spohn conditionalization on the partition [ltr]{A,W∖A}{A,W∖A}[/ltr] with [ltr]n>0n>0[/ltr] as new rank for [ltr]W∖AW∖A[/ltr] (and consequently 0 as new rank for [ltr]A),ϱn(W∖A)=nA),ϱn′(W∖A)=n[/ltr], determines a new ranking function [ltr]ϱnϱn′[/ltr] that induces a belief set [ltr]BnBn′[/ltr]. We have for any two positive numbers [ltr]m,nm,n[/ltr] in [ltr]N∪{∞}:Bm=Bn=B∗AN∪{∞}:Bm′=Bn′=B∗A[/ltr], where the latter is the belief set described two paragraphs ago.[/size]

Plain conditionalization is the special case of Spohn conditionalization with [ltr]∞[/ltr] as new rank for [ltr]W∖AW∖A[/ltr]. The new ranking function obtained in this way is [ltr]ϱ[size=13]′=ϱ(⋅∣A)ϱ∞′=ϱ(⋅∣A)[/ltr], and the belief set it induces is the same [ltr]B∗AB∗A[/ltr] as before. However, once the ideal doxastic agent assigns rank [ltr]∞[/ltr] to [ltr]W∖AW∖A[/ltr], she can never get rid of [ltr]AA[/ltr] again (in the sense that the only information that would allow her to give up her belief that [ltr]AA[/ltr] is to become certain that [ltr]AA[/ltr] is false, i.e., assign rank [ltr]∞[/ltr] to [ltr]AA[/ltr]; that in turn would make her doxastic state collapse in the sense of turning it into the tabula rasa ranking that is agnostic with respect to all consistent propositions and so assigns rank 0 to all of them). Just as in probabilism you are stuck with [ltr]AA[/ltr] once you assign it probability 1, so you are basically stuck with [ltr]AA[/ltr] once you assign its negation rank [ltr]∞[/ltr]. As we have seen, AGM belief revision theory is compatible with always updating in this way. That is one way to see why it cannot handle iterated belief revision. To rule out this behavior one has to impose further constraints on entrenchment orderings. Nayak (1994) and Boutilier (1996) and Darwiche & Pearl (1997) and others do so by postulating constraints compatible with, but not yet implying ranking theory (see Rott 2009b, who provides an excellent overview of qualitative and comparative approaches to iterated belief revision extending the AGM approach). Hild & Spohn (2008) argue that one really has to go all the way to ranking functions in order to adequately deal with iterated belief revision. Stalnaker (2009) critically discusses these approaches and argues that one needs to distinguish different kinds of information, including meta-information about the agent’s own beliefs and revision policies as well as about the sources of her information. For more on AGM belief revision theory, iterated belief revisions, and ranking functions see Huber (2013a, 2013b). For a discussion of belief revision theory in the setting of possibility theory see Dubois & Prade (2009).[/size]
 

Belief Revision Theory

الرجوع الى أعلى الصفحة 

صفحة 1 من اصل 1

صلاحيات هذا المنتدى:تستطيع الرد على المواضيع في هذا المنتدى
** متابعات ثقافية متميزة ** Blogs al ssadh :: Pensée-
إرسال موضوع جديد   إرسال مساهمة في موضوعانتقل الى: